Y-DNA Haplogroup J

All males living today can trace their Y-DNA lineage back to a theoretical Y-DNA prototype, which originated in Africa and is thought to have migrated out of Africa over 60,000 years ago (60kya).   Although the Y-DNA is usually inherited from father to son without any changes, occasionally differences arise via mutations.  Since these mutations or variations add up through generations, the differences provide a measure of genetic distance and they record steps back in time.  Armed with information about the rates, types and number of variations in the Y-DNA, we can create lineage maps or phylogenetic trees and make calculated estimates to trace our roots back to our forebears (e.g. to find the time to most recent common ancestor, TMRCA aka coalescence).
J-Haplogroup Dubai

Ancestral Markers


  • SNPs (single nucleotide polymorphisms)
  • STRs (short tandem repeats, aka microsatellites).

SNPs are a change in a single nucleotide in the DNA and occur infrequently; once they occur they are stable and typically define a whole chromosome and become its signature. 

STRs change by the number of repeats and change at a much faster rate than SNPs. 

By testing the combination of SNPs and STRs in our Y-DNA, we can gain information on our paternal ancestry, ranging from ancient history (thousands and tens of thousands of years ago) with the much slower mutating SNPs, to recent history (100-1000 years ago) with faster mutating STRs.  More simply, SNPs allow us to track ancient or deep ancestry, while STRs allow us to track recent ancestry in the range of immediate family history over several generations and the relatively modern use of

Y-DNA haplogroups

Haplogroups are groups or a population derived from a common ancestor. Y-DNA haplogroups are defined by slowly evolving SNPs, and each SNP characterizes or identifies a particular paternal haplogroup or branch of the Y-DNA phylogenetic tree.  (Note: mtDNA SNPs are used to determine haplogroups for maternal lineages). 

By contrast, the faster changing STRs are employed to determine haplotypes for the Y-DNA, where haplotypes are defined as a collection of variations in STR markers observed on the Y-DNA and can be thought of as a signature, one which tracks more recent genetic history.  Frequent haplotypes, commonly known as modal haplotypes can often be associated with defined populations and geographical regions, and can be informative or predictive of haplogroups that also show geographical preferences.  For example, from your haplotype determined through the Genebase Y-DNA STR Marker Test, you may already have a prediction of deeper genetic origins and a prediction of your Y-DNA haplogroup.

There are 20 major Y-DNA haplogroups (designated by the letters A through T) stemming in a branching fashion from the Y-chromosome prototype, aka “Y-DNA Adam” (haplogroup A), which may be seen as the root or trunk of the tree (see Figure 3).  Each branch and haplogroup after “Y-DNA Adam” is defined by a novel SNP or genetic change.  The Genebase Y-DNA backbone SNP Test Panel is used to determine Y-DNA haplogroups and additional panels are available to further resolve Y-DNA lineage into sub-haplogroups or subclades.   

The Y-DNA Haplogroup J story …so far

Early origins
The origin of Y-DNA Haplogroup J maps to the Middle East around the ‘Fertile Crescent’, an area also known as the ‘Cradle of Civilization’ since this area saw the birth of many technological advancements that helped humans move from nomadic hunter-gatherers to an agriculture-based society living in one place.  The sprouting of some the first cities and empires in human history were contingent on these developments and featured the proliferation of Haplogroup J.   

Y-DNA Haplogroup J is a descendent of suprahaplogroup F, which encompasses a large group Y-DNA lineages (haplogroups F-T, see Figure 3). Suprahaplogroup F is believed to have migrated from Africa approximately 50kya.  Haplogroup J arose approximately 30kya (see Figure 4) and has been defined by a number of unique Y-chromosome polymorphisms; the 12f2a deletion and the M304 and P209 SNPs.

The precise location for the origin of Haplogroup J is not known, but its prominence in the Near East/West Asia and the Middle East/Central Asia indicates that it likely arose in one of these regions. It is closely associated with the Fertile Crescent; an area spanning the Nile and Tigris/Euphrates River systems, with the Levant (present day Lebanon) in between. This region has encompassed many early cultures and empires from the Stone Age (Neolithic) to the Iron Age and has also been dubbed the ‘Cradle of Civilization’. Societies, dynasties and empires in this broad region include the Sumerian, Assyrian, Babylonian, Egyptian, Phoenician and Persian. Haplogroup J is also particularly abundant in Anatolia (present day Turkey) and the Y-chromosome diversity observed here suggests that this area is a possible source of this clade. Owing to these strategic locations, Y-DNA Haplogroup J is common on three continents: Asia, Europe and Africa.

SNPy trails and the spread of Haplogroup J
Middle East populations belonging to Y-DNA Haplogroup J migrated during or after the Neolithic era to Mediterranean regions and back to Africa; although this did not reach sub-Saharan regions (see Figure 5).  This spread contributes significantly to populations in European and African countries around the Mediterranean Sea.  Moreover, this migration, also termed a "demic diffusion", is believed to be the source of new agriculture practices, which included domestication of animals or pastoralism.  It is also associated with sedentism or the custom of living in one place as opposed to the more mobile hunter-gatherer and nomadic lifestyle.  Thus, the movement is tied to the rise of cities and city-states.   While Y-DNA Haplogroup J is linked with this important Neolithic demic diffusion, additional migrations subsequent to this provided other diasporic episodes of this haplogroup and its subclades.

The frequency of Haplogroup J drops with increasing distance from its peak in the Middle East (see Figure 6). The highest frequency is found in the Arabian Peninsula, in Yemen (87%) and Qatar (67%). The Levant region, around present day Lebanon, Israel and Iraq, has very high frequencies around 50%. The levels of Haplogroup J continue to drop in the surrounding regions. For example, Anatolia (present day Turkey) has ~40%, the Caucasus ~33%, Iran ~25% and Egypt ~25%. North Africa and East Africa also harbor significant levels (30-40%) of Haplogroup J. While Haplogroup J is found at moderate frequencies in South Europe and regions adjacent to the Mediterranean Sea (5-25%, e.g. Greece ~20%), it is infrequent in North Europe (e.g. 1-5% in UK, Germany and Russia). Haplogroup J is not observed in the Far East (e.g. 0% in China, Korea). It is likely that geographic features helped to create this distribution pattern, where deserts (e.g. the Sahara) and mountain ranges (e.g. the Himalayas) formed barriers and seas (e.g. the Mediterranean) facilitated diffusion.

Haplogroup J is among the Y-chromosome haplogroups with highest number of subclades (mutations).  Two major subclades have been examined in detail – J1 and J2.  The estimate for origin of the major subclades J1 and J2 spans 20-5kya and their expansion, diversification and dispersal has been the subject of several studies, which are detailed in the next section. 

How Subclades of Y-DNA Haplogroup J are determined

The further refinement of Y-chromosome ancestry can be obtained by using the Y-chromosome Haplogroup J Subclade Testing Panel. This panel is based upon a collection of 33 SNPs that identify 33 different subclades of Y-chromosome haplogroup J.

The procedure for identifying your Y-DNA Haplogroup J Subclade is as follows: Your Y-DNA Subclade will be automatically determined for you after your Subclade test is completed. However, if you are interested in finding out how your subclade was determined, just follow these steps: Step 1. Examine your test results from the Genebase Y-DNA Haplogroup J Subclade Testing Panel. Keep track of all your positive or derived SNP states and consult the Haplogroup J Subclade phylogenetic tree diagram (see Figure 7). Step 2. Start with the root or main branch of haplogroup J, which is ascertained by the presence of SNP M304. According to your test results, follow the branches with your SNPs from the Genebase Y-DNA Haplogroup J Subclade Testing Panel. The point at which you no longer have mutations to follow is the branch or subclade of Haplogroup J to which you belong!


Geographical Distribution of the Subclades of Y-DNA Haplogroup J

The following reference maps illustrate how the various subclades of Haplogroup J are distributed throughout the Near and Middle East and Europe.


Detailed Accounts of the J Subclades

The following section provides information on individual Haplogroup J subclades. This is gathered from the current literature and will be updated as ongoing studies are released and progress in this field is made available.


J1. M267

The J1 subclade of Haplogroup J is abundant in the Arabian Peninsula (10-75%), Africa (5-30%) and Southwest Asia (5-10%). It has a TMRCA estimated at ~10kya and expansion from 10-5 kya. J1 is common among Arab populations and has a substantial drop-off in non-Arab countries. For example, in a study of Lebanese groups, J1 was found at more than a twice the frequency in Muslim versus non-Muslim Lebanese. Northern source, i.e. the Caucasus of J1 presumed for the populations in the Arabian Peninsula.

The J1 subclade is found in Africa, but limited to the North and Northeast corner (Horn of Africa) adjacent to Sinai and Arabian Peninsulas. It is not found in Sub-Saharan populations. Semitic- and Caucasian-language populations in Africa have a typically high frequency of J1. Examination of the results for the phylogeography of subclade J1 and its STR variation support two African migrations – an earlier one during the Neolithic era driving Southward toward Ethiopia and a later one (7th century AD) traveling North. The second migration may have been spread by Arab slave trade, perhaps Bedouin groups. Further propagation was likely provided by Muslims in 6th century AD.

The J1 subclade is fairly common in Iran – as is J2 (~10% and ~20%, respectively). Iran is situated in an area that witnessed the migration of populations bearing both of these subclades. The J1 subclade is also common among Jewish populations (a similar J1 to J2 frequency profile as in Iran). The high frequency of the J1 subclade in Ashkenazi Jews versus non-Jews in Europe has led to the idea that this haplogroup is associated with the foundation of this population.

J1 is found at low levels in European Mediterranean countries (e.g. ~5% in Portugal) and bears a Y-chromosome signature closer to a Jewish Modal Haplotype (Cohanim Modal Haplotype) than the Arabian or Galilee Modal Haplotype. Since little gene flow has been found from North Africa into Europe, the presence of J1 in the European Mediterranean may have been spread by sea-faring Greeks or Phoenicians (general area of present day Lebanon) through the Mediterranean Sea. It should be noted the sister clade J2 is higher in Portugal and other Mediterranean countries and the speculation for maritime spread from the Aegean also exists for the J2 subclade. The J1 M267 SNP is associated with the DYS458.2 allele (either a GA deletion or AA insertion in a GAAA repeat) and with an unusually short DYS388 allele (13 repeats rather than a typical ≥15 repeats). These STR variants have been used as genetic markers and their co-inheritance with the M267 SNP indicates they are linked genetically.

The J1 subclades, listed below, have low frequencies detected so far and are likely to be minor subclades.


J1a. M62

The J1a subclade has been found at a very low frequency (1%) in Central Asia. It is likely to be a minor subclade. Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J1b. M365

The J1b subclade has been found at a low frequency in Anatolia (1-2%) and Georgia (~2%). It is likely to be a minor subclade. Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J1c. M390

To date, the J1c subclade has only been found in Lebanon at a frequency of 2.5%. It is likely to be a minor subclade. Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J1d. P56

Currently, no information is available for the distribution and frequency of this haplogroup J subclade. Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J1e. P58

Currently, no information is available for the distribution and frequency of this haplogroup J subclade. Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J1e1. M368

The only report of the presence of subclade J1e1 reveals a modest frequency in the north of Anatolia (3.5%). Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J1e2. M369

As with J1e1, the only reported incidence of this subclade is in Anatolia, at a low frequency (1.2%). It may be a minor subclade. Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J2. M172.

The J2 subclade is similar in distribution to J1, but it is typically present at a higher frequency. J2 is distinguished from J1 by a lower frequency in Arab populations and the near absence in Africa. The J2 subclade is highest in Anatolia and prominent in Mesopotamia and the Levant – all areas that served as centers of agricultural revolution. J2 is common among Turkish, Kurdish and Jewish populations and significant frequencies are found in the Caucasus, Iran, and Southcentral Asia. TMRCA estimates for this haplogroup range from 4-15kya.

J2 may be an important Y-chromosome lineage that was part of the demic diffusion and introduction of new agricultural practices into Europe from the Middle East and Anatolia during the Neolithic period. Anatolia could represent a Mesolithic pocket of the J2 subclade, which spread later to Europe in the Neolithic-Holocene periods (10kya) and subsequently featured in the emergence and progress of the Bronze Age (5kya).

Prominent European areas of J2 abundance include the Iberian Peninsula, Italy, the Balkans and Greece. An interesting general feature is that J2 frequencies drop off considerably in the Northward direction. From the Balkan Peninsula, there is a drop in abundance moving into and beyond the Carpathian Mountain countries of Ukraine, Romania, and Hungary. A similar sharp drop-off between Nepal and Tibet is attributed to the geographic barrier of the Himalayan Mountains. In Russia, the J2 subclade is more frequent than J1, but because it is much lower than the neighboring Caucasus region (e.g. Georgia, Azerbaijan) to the South, there appears to be infrequent patrilineal gene flow from the Caucasus to Russia. The Caucasus Mountain Range may have been an effective barrier separating Russia to the North and the Caucasus to the South. See Figure 6 for the sites of these mountains.

As discussed for subclade J1, the diffusion of the J2 subclade into Europe may have been by mediated by the Mediterranean Sea. The J2 subclade is abundant on several Mediterranean Islands: Crete, Cyprus, Malta, Sicily, Sardinia and Korčula (Croatia). The frequency of J haplogroups can distinguish Mediterranean groups (North Africa) (Near East/Arabs) (Central/East/Lebanon) (West). Similarly, using STR data, three groups can be revealed (North African)(Arab/Palestinians)(Mediterranean/Italy/Sardinia). The J2 chromosomes in Crete are more similar to those found in Anatolia than those found in Greece when the DYS413 and other STR data are taken into account. This shows that there are sufficient genetic differences to differentiate the populations and it may represent multiple episodes of J subclade expansion and dispersal.

The J2 subclade is abundant in Iran (30%), known throughout much of history as Persia. Studies support the introduction of this subclade here from Anatolia, with less contribution from the East in the direction of Pakistan. The barriers presented by the Hindu Kush mountains in Pakistan and deserts in Iran, may have limited gene flow from the East. The attraction of the fertile Mesopotamian valley may have favored the migration from Anatolia in the West, thus producing a general West to East migration pattern and spread of J2 into Iran. A genetic separation between the North and South of Iran may have also been aided by the deserts separating these regions. Furthermore, cultural alliances between Anatolia and Persia have been strong as exemplified by Babylonian, Assyrian, Persian and Ottoman Empires, lending support to the idea that there was a strong connection from Turkey, through Iraq to South Iran. It is quite possible that these empires aided the dissemination of Haplogroup J.

The J2 subclade is abundant in India (2-20%), and its frequency peaks in the Northwest region. Anatolia is most likely the source of this subclade in India, again consistent with the West to East flow of J2. The date of this invasion points to a period during or after the Neolithic era. J2 lineage is also found in SW India with an interesting frequency trend: a higher fraction of J2 in the higher castes and decreasing amounts in lower castes.


J2a. M410

The J2a subclade is present in the Middle East and Southcentral Asia (~4%), the latter of which includes India and Nepal. In India, there is a general trend for increased J2a frequency in higher castes. It has also been found in Crete (1-2%).


J2a1. M47

The J2a1 subclade is found at low levels in Anatolia (1-4%) and Georgia (2%). In the Middle East, it has been detected at similar levels in Iran, Iraq, Qatar and the United Arab Emirates. This appears to be a relatively low frequency J subclade.


J2a2. M67

This subclade is abundant in the Caucasus (Georgia 13%, Azerbaijan 4%) and is ancient group – TMRCA estimates at 12kya. It has also been found at appreciable levels (1-8%) in Anatolia, with preponderance in the Northwest as well as in Italy (~5%) and the Iberian Peninsula (2-3%). This has led to proposals for migration over land from Anatolia via the Bosphorus Isthmus or over the Mediterranean Sea. Notably, 10% of the Y-chromosomes on Crete are of this variety. J2a2 is also found in the Arabian Peninsula, Iraq, Lebanon, Pakistan and India. Significant frequencies (10-20%) are also found in Jewish populations.

In some cases, unique DYS alleles have also been used for J2 sub-classification. The J2a2 subclade is linked to a DYS413 deletion allele (repeat length ≤18), which has been frequently treated as a UEP. A proportion of males with J2a1 (M47) also have this allele. This would be consistent with DYS413≤18 as parent chromosome to the chromosomes carrying the M67 and M47 SNPs. (DYS413≤18 has not been found in the M12 J2b subclade).


J2a2a. M92

The estimated TMRCA is 9kya for the J2a2 subclade. Its distribution has been recorded in Italy (5%), Anatolia (~4%) and the Balkan Peninsula (~3%). Notable levels have also been located in South Iran, Iraq, Pakistan and Northwest India. Its presence in Europe, may indicate that the Bosphorus Isthmus was a migratory route (see also J2a2). Alternatively, the Mediterranean Sea could have been used for the spread of this subclade. It has been found in Ashkenazi Jews, but not Sephardic Jews.


J2a2a1. M327

Little information is currently known for the J2a2a1 subclade, but it appears to a minor and infrequent subclade. It has been found in Konya in Turkey


J2a2b. M163

A minor J subclade, currently it has only been found at very low levels (0.2%) in Spain (non-Basques). Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J2a3. M68

J2a3 appears to be a minor subclade with low levels (1%) detected in Iraq and India. Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J2a4. M137

A limited set of studies have failed to detect this subclade and it appears to be a very minor subclade. Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J2a5. M158

Modest levels (1-2%) of the J2a5 subclade have been uncovered in Anatolia, Pakistan and India. Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J2a6. M289

J2a6 appears to be a minor subclade. Currently it has only been detected in the Druze in Israel (5%). Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J2a7. M318

J2a7 appears to be a minor subclade. Currently it has only been detected in Israel for those of Libyan Jewish ancestry (5%). Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J2a8. M319

The J2a8 subclade, defined by SNP M319, has been found in Crete (6-9%), which may be source of M319 subclade, as this subclade is infrequent and not found in many other areas. Presently, Israel is the only other location where this subclade has been found. Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J2a9. M339

The J2a9 subclade has not been studied extensively. It appears with a very low frequency in parts of Anatolia (1%). Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J2a10. M340

The J2a10 subclade has not been studied extensively. It appears with a very low frequency in parts of Anatolia (1%). Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J2a11. M419

The M419 defines the J2a11 subclade. It has not been widely studied, and has been found at 1% in Northern Iran. Likely to be a minor subclade. Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J2a12. P81

Currently, no information is available for the distribution and frequency of this haplogroup J subclade. Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J2a13. P279

Currently, no information is available for the distribution and frequency of this haplogroup J subclade. Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J2b. M12

The J2b subclade has a similar European distribution to Y-chromosome subclade E-V13 and TMRCA estimate (~4.4kya), which is consistent with a common route of dispersal. It is most prominent in Balkans, Greece and Italy (North and Central regions), reaching frequencies around 5-10%. Present day countries with the highest frequencies include Albania, Hungary, Greece and Macedonia. This haplogroup population may have moved through the Balkans and north into Europe via rivers, such as the Danube. It is present in Crete and the Iberian Peninsula, which could also indicate a spread by sea-faring routes in the Mediterranean.

The J2b subclade is also present in Pakistan, India and Iran (3-4%). It displays a modest frequency in Egypt, Oman, Qatar and the United Arab Emirates (1-4%) and Africa. These trends in Arab populations and Africa are reminiscent of the distribution of the J1 subclade and provides evidence that the several of the J subclades share some history in dispersal and expansion.


J2b1. M205

Currently, no information is available for the distribution and frequency of this haplogroup J subclade. Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J2b2. M241

The J2b2 subclade is present in India, where it appears to have the highest frequency among the middle castes (Dravidian and Indo-European). Its overall level in India is ~5% and this frequency drops in half in neighboring Pakistan. J2b2 is also found in Nepal, but no J2b2 has been found in Tibet, providing strong evidence that the Northern spread of this subclade was prevented by the Himalaya Mountains.

The J2b2 subclade is also present in Anatolia, specifically in the southern and eastern regions, which have been proposed as a source of J haplogroups for many regions. An interesting peak of the J2b2 subclade has been detected in Kosovar Albanians (~17%), whereas the J2b2 levels range from 1 to 4% in the Balkans overall.

Within the J2b2 subclade defined by SNP241, there is a DYS455 deletion allele (8 repeats or DYS455=8) that is not found in the J2b1 (SNP M205) subclade.


J2b2a. M99

Currently, no information is available for the distribution and frequency of this haplogroup J subclade. Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J2b2b. M280

The J2b2b subclade has so far only been detected in Greece (2%). It appears to be absent from surrounding areas and it is likely to represent a minor J subclade. Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J2b2c. M321

Limited information is available for the J2b2c subclade and the information available so far has only shown it to be present in Libyan Jewish population in Israel (5%). Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J2b2d. P84

Currently, no information is available for the distribution and frequency of this haplogroup J subclade. Check this site regularly for updates on this subclade as new information will be posted as studies become available.


J*

Have been detected but at a very low frequency to date, meaning that the major subclades J1 and J2 account for nearly the entire Y-chromosome J lineage.


Modal haplotypes associated with Y-DNA Haplogroup J

Your unique set of Y-DNA STR markers obtained through the Y-DNA STR test is referred to as your "Haplotype". This is not to be confused with your "Haplogroup" which is determined by testing the SNP markers in your Y-DNA through Y-DNA SNP backbone and subclade testing.

When the Y-DNA STR markers are tested for large groups of people from around the world, the haplotypes which occur with the highest frequencies within certain populations are called "Modal Haplotypes".

For example, a ‘Cohanim’ modal haplotype is common among Y-chromosomes in males of Jewish ancestry with the Cohen surname and is proposed to have ties to the priestly lineage from biblical Aaron, and can be differentiated from other Middle Eastern lineages, such as the ‘Galilee’ or ‘Bedouin’ Modal Haplotypes which are associated with Arab populations.

The following table provides a list of modal haplotypes most commonly associated with Haplogroup J. This table can be used to compare to your Y-DNA STR results to see if you match any of the following Modal Haplotypes.

Emirati Family Tree | Origin Test in United Arab Emirates | Family Tree Ancestors with J Haplogroup (UAE) | Findout your Origin Root in Gulf(Arab) Countries | Middle East Genetic Genealogy | Ancestry Dubai Abu Dhabi, Ras Al-Khaimah, Ajman, Sharjah, Al-Ain, Fujairah | Ancestry Test Center in Egypt, Jordan, Kuwait, Lebanon, Oman, Qatar | Ancestors in Bahrain, Omani, Saudi Arabia, Algeria, Libya, Malaysia | Haplogroup with Find | Nigeria, South Africa, Syria, Muscat, Iran